
J .  FZuid Heck. (1985). v06. 159, pp.  359-378 
Printed in Great Britain 

359 

Magnetostatic equilibria and analogous 
Euler flows of arbitrarily complex topology, 

Part 1. Fundamentals 
By H. K. MOFFATT 

Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge 

(Received 5 February 1985) 

The well-known analogy between the Euler equations for steady flow of an inviscid 
incompressible fluid and the equations of magnetostatic equilibrium in a perfectly 
conducting fluid is exploited in a discussion of the existence and structure of solutions 
to both problems that have arbitrarily prescribed topology. A method of magnetic 
relaxation which conserves the magnetic-field topology is used to demonstrate the 
existence of magnetostatic equilibria in a domain 9 that are topologically accessible 
from a given field Bo(x) and hence the existence of analogous steady Euler flows. The 
magnetostatic equilibria generally contain tangential discontinuities (i.e. current 
sheets) distributed in some way in the domain, even although the initial field B,,(x) 
may be infinitely differentiable, and particular attention is paid to the manner in 
which these current sheets can arise. The corresponding Euler flow contains vortex 
sheets which must be located on streamsurfaces in regions where such surfaces exist. 
The magnetostatic equilibria are in general stable, and the analogous Euler flows are 
(probably) in general unstable. 

The structure of these unstable Euler flows (regarded as fixed points in the function 
space in which solutions of the unsteady Euler equations evolve) may have some 
bearing on the problem of the spatial structure of turbulent flow. It is shown that 
the Euler flow contains blobs of maximal helicity (positive or negative) which may 
be interpreted as ‘ coherent structures ’, separated by regular surfaces on which vortex 
sheets, the site of strong viscous dissipation, may be located. 

1. Introduction 
In  a paper of great fundamental interest for fluid mechanics, Arnol’d (1974) has 

posed the following problem in magnetohydrodynamics,t which, by process of 
analogy, has an immediate bearing on the question of existence and structure of 
solutions of the steady Euler equations of fluid flow. Let 9 be a bounded domain 
in Ra (different possibilities are shown in figure 1) containing a viscous, but perfectly 
conducting, incompressible fluid. Suppose that, at  time t = 0, the fluid is at rest and 
contains a magnetic field B,,(x) satisfying V.Bo = 0, n*Bo = 0 on 8 9  (conditions that 
&re then satisfied €or all t > 0). In  general, the Lorentz force (V A B,,) A So is 
rotational, and motion must ensue. The total energy (magnetic plus kinetic) must 
decrease owing to  viscous dissipation, but the magnetic energy has a lower bound 
associated with any non-trivial topological structure in the field Bo(x) which is 
subsequently conserved since, by virtue of the perfect-conductivity assumption, 
B-lines are frozen in the fluid. Hence the system must ‘relax’ to a state of 
magnetostatic equilibrium BE(x)  say, with tt = 0, as t+ CQ, and evidently the 

t Arnol’d attributes the conception of this problem to Ya. B. Zel’dovich. 
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FIQURE 1. The magnetic-relaxation problem : the domain 9 may be (a) simply connected, 

(b )  multiply connected, or even (c) multiply connected and of complex topology. 

topology of BE is, in a sense that will be clarified in subsequent sections, the same 
as that of B,. A well-known analogy between the equations of magnetostatics, and 
the steady form of Euler’s equations for inviscid flow, then implies the existence of 
an analogous ‘Euler flow’ uE(x)  in 9, having the same topological structure as the 
arbitrary solenoidal field B,. 

In  earlier papers, Arnol’d (1965, 1966) had considered the general question of the 
topology of Euler flows u(x) ,  and had shown that, under the assumption that u is 
an analytic function of x ,  then either the streamlines (and vortex lines) lie on families 
of toroidal surfaces ‘nearly everywhere’ in 9, or u satisfies the equation curl u = au 
for some constant a, throughout B. This strong structural constraint seems 
incompatible with the more general type of flow conceived in the later paper, and 
Arnol’d (1974) concluded that the ‘ magnetic-relaxation ’ problem as described above 
would in general have no solution within the class of smooth vector fields. 

In this paper we treat the magnetic relaxation problem ab initio, and we abandon 
the constraint that the magnetic field B(x, t )  should necessarily remain smooth. 
From a physical point of view, current sheets may of course survive in a perfect 
conductor (just as vortex sheets may survive in an inviscid fluid), and we shall show 
by particular example (in $ 5 )  just how such current sheets may arise even when the 
initial field B,(x) is infinitely differentiable. We shall prove in $3  that the field does 
relax to  an equilibrium field BE(x) ,  which may in general contain such current sheets, 
distributed in some manner throughout 9. The field BE(x)  is, however, ‘topologically 
accessible’ from B,(x) in a sense that will be made precise in $$2 and 3. 

This result has some rather extraordinary consequences, particularly when inter- 
preted in the context of steady Euler flows. It appears that for any given ‘kinematically 
possible ’ flow U(x)  in 9, with arbitrarily complex topology, there exists at least one 
Euler flow uE(x)  with essentially the same streamline topology as U. Since there is 
an uncountable infinity of possible flow topologies, this implies the existence of an 
equally uncountable infinity of topologically distinct solutions of the steady Euler 
equations for an arbitrary domain 9 (which may itself have arbitrarily complex 

It is interesting to note that it is the streamline topology, rather than the vortex-line 
topology, that can be freely prescribed. This runs counter to physical intuition based 
on the frozen-field character of the vorticity field in unsteady inviscid flow. However, 
the analogy on which this work is based is that between B and u in corresponding 
steady states, and does not extend to the evolution of perturbations about the steady 
states. This means that the stability properties of the Euler flows are not the same 
as those of the magnetostatic equilibria to which they correspond. An explicit 
example will be given in $4 to illustrate this important distinction. In general, 

topology). 
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however, the approach of this paper leaves open the question of stability of the 
Euler flows. 

The results may have important consequences at a fundamental level in 
understanding the nature of turbulent flow. Insofar as viscosity may be neglected, 
steady solutions of the Euler equations may be regarded as the fixed points in the 
function space in which solutions of the unsteady Euler equations, which may have 
a turbulent character, evolve. Even if, as is probable, these fixed points are unstable, 
it is important to ‘locate ’ them, and to understand the corresponding flow structure, 
and then to identify the ‘heteroclinic orbits’ in the function space connecting such 
points (the saddle connections), since these are known in general to be the seat of 
chaotic behaviour. The steady Euler flows that we shall find have a conceptually 
simple structure in which regions of maximum relative helicity (positive or negative) 
in which the streamlines are ergodic are separated by families of streamsurfaces which 
may include vortex sheets; these vortex sheets may be expected in general to be 
unstable, and, when viscosity is restored to the fluid, they are of course the seat of 
strong viscous dissipation. The regions of maximum relative helicity may then be 
recognized as fulfilling the role of ‘coherent structures’ in which the rate of energy 
dissipation is relatively low. Such ideas have been touched on previously (Moffatt 
1984; Levich & Tsinober 1983), and the idea that coherent structures are helical in 
character receives observational support from the work of Tsinober & Levich (1983). 
This turbulence scenario, still somewhat speculative at this stage, is developed in $9 
of this paper. 

2. Constrained and unconstrained relaxation 
The magnetic-relaxation problem outlined above is more subtle than it might 

appear at first sight because the topological constraints, although perhaps physically 
clear, are quite hard to characterize mathematically. It may therefore be helpful to  
consider first a different type of relaxation problem which illustrates in a clear and 
simple manner some of the features that are present in more disguised form in the 
magnetic context. 

Consider an incompressible medium (which may for the moment be either an 
unstrained elastic dissipative solid or a viscous fluid) which a t  time t = 0 has 
non-uniform density po(x), within the cylindrical domain 

9: 0 < z < z,,, 0 < r < a, (2 .1)  

in a uniform gravitational field g = ( O , O ,  - 9 )  (figure 2 a ) .  Since g A Vp, =k 0, this is 
obviously not an equilibrium configuration, and the medium will move with velocity 
v(x, t )  (where v(x,  0 )  = 0) ; we suppose that u = 0 on a 9 .  If p(x, t )  is the density field 
then the equation of mass conservation is 

i.e. the surfaces p = const. are material surfaces: they are ‘frozen’ in the medium. 
Suppose first that the medium is an elastic solid, unstrained at time t = 0, which 

dissipates energy when it moves within 9. To be specific, let us suppose that po(x) 
is uniform except for a region of increased density near the centre of 9 as illustrated 
in figure 2 ( a ) .  Then it is clear what must happen: the heavier part of the medium 
‘sags’ downwards, causing a (net) displacement of the lighter part upwards. As t+ 00 

(and possibly after some oscillations) the medium settles down to an equilibrium in 
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FIQURE 2. Gravitational relaxation of an incompressible 
medium with an initial density perturbation. 

which the sum of the gravitational potential energy and the elastic strain energy is 
minimized (figure 2 b ) .  We may characterize this equilibrium by -a mapping 

x + 3 (2.3) 

where XI@) is the final position of the particle initially at x. Since the elastic energy 
is finite, it is clear that this mapping must be continuous, and indeed uniformly 
continuous, i.e. for each e > 0 there exists 6 > 0 such that 

IXl(x)-Xl(y)I < e whenever I x - y I  < 6, (2.4) 

where x and y are any two points in g( = 9 U i 9 ) .  It is moreover clear that the 
mapping (2.3) is onmne,  that its inverse exists, and that this inverse is also uniformly 
continuous. In the language of topology, the mapping (2.3) is by virtue of these 
properties, a homeomorphism, which establishes a topological equivalence between the 
initial density field p,(x), and the final equilibrium density field p E ( x ) ,  given by 

This topological equivalence corresponds to the self-evident fact that the surfaces 
pE(x) = const. can be obtained from the surfaces po(x)  = const. by the continuous 
distortion of the medium x + X 1 ( x ) .  The same would be true for ‘more interesting’ 
initial conditions, e.g. that indicated in figure 3 (a ) ,  in which p,(x) is uniform except 
in two linked toroids, in one of which there is a density deficit, and in the other a 
density excess. This density field will again relax (via a homeomorphism) to an 
equilibrium field pE(x) that is topologically equivalent in a strict mathematical sense 

Suppose now that the medium in 9 is a viscous fluid (still incompressible). Then 
there is no build-up of elastic energy, i.e. the relaxation process is unconstrained 
(except for the innocuous constraint of incompressibility). Relaxation therefore 
proceeds in an unimpeded manner until all the heavier fluid accumulates at  the 
bottom of the cylinder; indeed the ultimate equilibrium as t -+ 00 (again possibly after 
some damped oscillations) is given by 

to PO(X).  
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FIGURE 3. Same aa figure 2, but with the initial density perturbations in linked toroids. 

this being the configuration of minimum potential energy. The surfaces pE = const. 
are now horizontal planes intersecting a 9  (figure 2 c ) .  These surfaces do not appear 
to be topologically equivalent to the surfaces p,(x) = const. ! If we allow closure of the 
surfaces pE = const. on the boundary a 9  then this topological equivalence survives, 
but in a restricted sense, since evidently material surfaces that were quite separate 
at  t = 0 have now (in the limit t = co) been squashed together on a.9.  

It is easy to see that this behaviour is related to non-continuity of the mapping 
function X(X)  that takes the fluid particle initially at x to its final position X. For 
example, let x, be the point of maximum density in figure 2 (a)  ; then any initial small 
sphere of fluid I x-x, I < 6 is ultimately spread over a layer on the bottom of the 
cylinder; hence the continuity condition (2.4) cannot be satisfied for x = x,; i.e. the 
mapping x + X ( x )  is not a homeomorphism. Actually the mapping is discontinuous 
for all points x vertically below x,, if the initial configuration of figure 2(a)  is 
axisymmetric. 

The situation is somewhat worse for the initial condition of figure 3(a ) ;  here the 
lighter fluid all ends up at the top of the cylinder, and the heavier fluid all ends up 
at the bottom. The mapping x + X ( x )  is then apparently discontinuous for all points 
x on two surfaces emanating from the curves of maximum and minimum density ; 
and also for all points x on two sections of the toroids which are stretched without 
limit in the filaments of vanishing cross-section which are the final vestige of the initial 
linkage (figure 3c) . t  

A certain property of the final approach to equilibrium in these fluid situations is 
worth noting. The final stage in the transition from figure 2 (b )  to figure 2 (c) involves 
the squeezing out of a thin film of lighter fluid by the descending heavier fluid. This 
is analogous to the well-known ‘squeeze-film’ problem of lubrication theory (see e.g. 
Moffatt 1977, $3.6). The film thickness decreases asymptotically as an inverse power 
of time (typically t-i,  although the precise power may depend on the particular 
geometry envisaged). It is obviously during this stage that unbounded straining of 
certain fluid elements occurs. It might be thought that the final stage of approach 
to equilibrium might be captured in terms of a small perturbation (stability) analysis 
about the equilibrium state. This, however, is not the case. The small-perturbation 
equations admit exponentially damped solutions which do not cover the power-law 
behaviour described above. The ‘perturbation’ corresponding to the final stage of the 

t We ignore non-Newtonian effects, which would in practice resolve such singularities. 
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FIQURE 4. Same as figure 2, but with a density perturbation superposed on a stable 
density stratification; a squeeze-film forms in the interior of the fluid. 

relaxation problem is in fact singular, and cannot be captured within the framework 
of a regular perturbation analysis. 

Note that the squeeze-film may equally form in the interior of 9 if the initial 
conditions are different. For example, if p,(x) is stably stratified, but with a 
superposed density increment as indicated in figure 4 (a) ,  then the heavier blob will 
descend to the level a t  which i t  is in equilibrium with its surroundings (figure 4b), 
and a squeeze-film will form at about this level. 

We shall find, in the context of the magnetic-relaxation problem, that the 
relaxation process is in certain respects intermediate between that of an elastic solid 
and that of an unconstrained fluid. The elastic behaviour is associated with the 
‘tension ’ in the magnetic lines of force (‘B-lines ’) which means that unbounded 
stretching of fluid elements in the direction of the convected magnetic field is not 
possible. On the other hand, fluid motion involving unbounded stretching of certain 
fluid elements in a direction perpendicular to the convected field is not excluded; the 
associated mapping x + X ( x )  relating initial and final states is then not continuous, 
and singular surfaces may form both on parts of a 9  and in the interior of 9. These 
singular surfaces are of course the current sheets referred to in 5 1. 

Since the mapping x + X ( x )  is not in general a homeomorphism, the equilibrium 
field BE(x)  will not in general, within the conventional meaning of the term, be 
topologically equivalent to the initial field B,(x).  Nevertheless, the field BE(x)  is 
arrived at by the convective action of a velocity field u ( x , t )  (0 < t < 00) which is 
certainly smooth (i.e. continuously differentiable) if the viscosity is sufficiently large, 
and which has finite total viscous energy dissipation. During this evolution, there is 
certainly no ‘ reconnection ’ of B-lines, although for example two circular flux tubes, 
initially separate, may come into contact over a finite area in the final equilibrium 
state. We are therefore dealing with a somewhat weaker form of topological 
equivalence than that associated with homeomorphism. We need a new concept of 
topological accessibility rather than topological equivalence, a field BE@) being 
topologically accessible from a field B,(x) if i t  can be obtained by the convective action 
on B,(x) of a velocity field v ( x ,  t )  satisfying the conditions of smoothness and finite 
dissipation specified above. We shall give further precision to this concept, which is 
of central importance to the argument, in $3. 



Magnetostatic equilibria and Euler flows of complex topology 365 

3. The magnetic relaxation problem 
Let us now consider the details of the magnetic relaxation problem described in 

5 1. Here the velocity field u(x, t )  and magnetic field B(x, t )  evolve according to the 
equations of magnetohydrodynamics : 

p -+u*Vv = -Vp+j  A B+yV2v,  (: ) 
aB 
- = curl (u  A B),  
at 

V * U  = V * B  = 0, (3.3) 
where p is the fluid density (now assumed uniform), y is the viscosity (which we may 
for convenience assume sufficiently large for the Reynolds number associated with 
the flow to be permanently of order unity or less), p ( x ,  t )  is the pressure field, and 

j = curl B (3.4) 

is the current field (the conventional factor yo being omitted for simplicity of 
notation). Equation (3.2) guarantees that B-lines are frozen in the fluid, so that all 
knots and links in B-lines are permanently conserved. The initial conditions are 

B(x,  0) = B&), U ( X ,  0) = 0, (3.5) 
where Bo(x) is an arbitrary smooth solenoidal field satisfying n*Bo = 0 on a 9 .  The 
boundary condition associated with (3.1) is 

v = O  o n a 9 ,  (3.6) 

n*B=O o n a 9  f o r a l l t 2 0 .  (3-7) 

and (3.2) then guarantees that 

The problem thus defined may appear somewhat artificial in that, in most 
conducting fluids or plasmas, the magnetic resistivity q is of the same order of 
magnitude, if not much greater than, the kinematic viscosity v = y /p ,  and it may 
therefore seem unrealistic to take account of viscosity while neglecting resistivity. 
It is a situation where the end justifies the means: i t  will become apparent that the 
introduction of viscous dissipation is merely a mathematical expedient which is 
helpful in forcing the system towards a particular type of equilibrium, and thereby 
proving the existence of this equilibrium. Other types of dissipation might do equally 
well - e.g. if ,u Vev in (3.1) is replaced by - kv, an analogous relaxation theory may 
be developed; the crucial feature of the argument, however, is that magnetic resis- 
tivity is  neglected during the relaxation process. To be sure, once the magnetostatic 
equilibrium (with or without current sheets) is identified, the effects of non-zero 
resistivity may then be considered, and no doubt resistive instabilities of various 
kinds (Furth, Killeen & Rosenbluth 1963) will then lead to changes in the magnetic 
topology; but that is a quite separate issue, outside the scope of the present analysis. 

The energy equation may be obtained by taking the scalar product of (3.1) with 
v ,  (3.2) with B, adding and integrating over 9. Defining the magnetic energy 
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the kinetic energy 

and the rate of viscous dissipation 

this equation is 
d 
dt 
- ( M ( t )  + K ( t ) )  = - @ ( t ) ,  

(3.9) 

(3.10) 

(3.11) 

so that the total energy certainly decreases monotonically for so long as u + 0. 
Now the decrease of magnetic energy proceeds by a process of contraction of B-lines 

(just the opposite of the dynamo process in which increase of magnetic energy is 
associated with stretching of B-lines). Let us consider the details of this process for 
the case of a circular magnetic flux tube of radius a and initially small uniform 
cross-section AS,  carrying flux @. With B = @/AS in the tube, the magnetic energy 

(3.12) 
is 

where V = 2xa AS is the volume of the tube. If the tube contracts, keeping Q, and 
V constant, this energy obviously decreases, and this can be thought of as due to  the 
release of the magnetic tension in the B-lines. Note that if two flux tuhes of equal 
volume V and of radii a, b (b < a) carrying fluxes Qi,, Qi2 (G2 < Qil) are interchanged 
(figure 5) then there is a net reduction of magnetic energy 

1 - B2 d V = ~ K ~ u ~ @ ~ /  V ,  
2 I,,,. 

2x2 
- I.’ (a2- b2)  (@:-a;). (3.13) 

This is the well-known interchange instability. 

FIGURE 5. Interchange of two flux tubes, leading to a decrease of magnetic energy if @I > a2. 

Obviously therefore, B-lines will continue to  contract and thus to release magnetic 
energy for so long as an unimpeded ‘contraction path’ is available. If, however, the 
topology of the initial field B,(x) is non-trivial, in the sense that not d l  of the B-lines 
can shrink to a point withouf cutting other B-lines (see e.g. figure 9a  on p. 371), then 
M ( t )  cannot decrease below some bound &Imin( > 0) determined by this topology. One 
possible measure of the ‘degree of linkage’ of B-lines (Moffatt 1969) is given by the 
helicity of the field 

N = A-BdV, (3.14) 

where A is a vector potential for B satisfying 

W A A = B ,  W . A = O .  (3.15) 

This helicity is constant under frozen-field evolution (Woltjer 1958), and it is in 
general non-zero for fields of non-trivial topology. Arnol’d (1974) (see also Moffatt 
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1969, $4) has identified &' with ageneralized 'asymptotic ' form of the Hopf invariant 
and has indicated how the invariance of X places a lower bound on M ( t ) .  First, by 
the Schwartz inequality, 

(3.16) 

Secondly, by standard methods of the calculus of variations (for a detailed treatment 
of an analogous problem see Roberts 1967, chap. 3), we may show that 

r r 

where qi( > 0) is the smallest eigenvalue of the problem 

I (V2+y2) A = 0 
V A A = 0 

in $9, 

outside 9, 
[A]? = 0 across 8 9 ,  

A+O asIxJ+co .  

Hence, combining (3.16) and (3.17), we have 

M ( t )  2 &o I&' I? 
which provides the required lower bound. 

(3.17) 

(3.18) 

(3.19) 

FIQURE 6. The Borromean ring configuration ; for such configurations involving ' higher-order 
linkage ', all helicity invariants vanish, but there is nevertheless a topological constraint on 
magnetic energy decay. 

Note that for an arbitrary B&) the actual lower bound for M(t )  may be very much 
greater than that given by (3.19). For example, as recognized by Arnol'd (1974), even 
if &' = 0, there may exist subdomains g c ( t )  of 9 such that a 9 , ( t )  is a magnetic surface, 
so that the helicity &'t associated with the subdomain is invariant (Moffatt 1969). 
This will provide a lower bound analogous to (3.19). More subtly, there are 
configurations, such as the Borromean ring configuration (see figure 6) for which 
iVt = 0 for every subdomain g a ( t )  within a magnetic surface, and which nevertheless 
exhibit a higher-order linkage than that which contributes to helicity integrals. There 
is undoubtedly a lower bound for M ( t )  in such situations, but i t  cannot be expressed 
in a form as simple as (3.19). 
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The import,ant point, however, is that, if the topology is non-trivial, then a lower 
bound Mmin for M ( t )  (and a fortiori for M ( t )  + K ( t ) )  certainly exists. Hence since 
M ( t ) + K ( t )  is a monotonic decreasing function, bounded below, it must tend to a 
constant, M E  2 Mmin, as t --f co ; in this asymptotic situation the dissipation must 

(3.20) 
vanish, and so 

v = O  and B = B E ( x ) + O ,  

and, from (3.1), it is evident that BE is a magnetostatic field satisfying 

jE A BE = WpE, (3.21) 

with curl BE = jE, for some p E ( x ) .  We emphasize that in this equilibrium state the 
field BE(x)  may have surfaces of tangential discontinuity imbedded in 9. If Z is such 
a surface, however, then n*BE = 0 on both sides of Z (since otherwise there would 
be an infinite Lorentz force component tangential to the sheet), and the jump 
condition related to (3.21) is satisfied, wiz 

bE+&BE.BE]-I- = 0 across Z. (3.22) 

The precise manner in which such current sheets may arise, even if the initial field 
Bo(x) is infinitely differentiable, will be considered in $5. For the moment, we simply 
observe that the appearance of such singularities must evidently be associated with 
non-continuity of the mapping x + X ( x )  associated with the net displacement of the 
fluid during the relaxation process. 

In terms of this mapping, the final field BE@) is related to the initial field 
BOW by 

(3.23) 

the Lagrangian counterpart of the frozen-field equation (3.2). Now, although BE(X)  
may have discontinuities, it  is physically obvious that 1 BE(X) I is bounded in 9 (a 
singularity of BE(X) would require infinite stretching of B-lines, which appears to be 
incompatible with the nature of the relaxation process); hence, from (3.23), X ( x )  is 
differentiable at  x in the direction of Bo(x).  However, X ( x )  need not be differentiable 
in directions perpendicular to Bo(x).  Note, moreover, that 

(3.24) 

so that discontinuities of BE(X) may appear if the inverse mapping X + x ( X )  is 
non-differentiable. 

The field B(x, t )  for any jinite t > 0 can be pictured more simply. The particle 
displacement x + X ( x ,  t )  for finite t is a homeomorphism, and the corresponding B(x, t )  
is topologically equivalent in a strict sense to Bo(x).  As t -+ GO , however, just as in 
the simpler example of $2, the limit mapping x + X ( x )  may become non-continuous, 
and the limit field BE(x)  is then not strictly topologically equivalent to B&). It is 
nevertheless topologically accessible from Bo(x) in the sense defined in $2 : it is obtained 
by distortion of the field Bo(x) by a smooth solenoidal velocity field v ( x ,  t )  (0 < t < GO), 

whose dissipation function @ ( t ) ,  given by (3.10), satisfies 

joW @ ( t )  dt < co. (3.25) 

Under these conditions all links and knots in Bo(x) are faithfully carried over to BE@), 
and we may say (loosely) that BE@) has the same topology as Bo(x).  

It is clear that in general this magnetostatic equilibrium will be stable to small 
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Space of functions B(x) satisfying V . B = 0, n . B = 0 on a 9  

Subspace of functions B topologically accessible from B,, 

FIQURE 7. Schematic indication of the approach to a magnetostatic equilibrium BE@) in the 
subspace of fields topologically accessible from the initial field B,,(x). The equilibrium field BE@) 
need not be unique, and different relaxation procedures may lead to different stable equilibria. 

perturbations governed by (3.1)-(3.5) linearized about the equilibrium state. We 
should note that the equilibrium field BE@) of given topology may not be unique, 
and in fact if the relaxation process is carried out for different values of the 

R = B,Lp /y ,  (3.26) dimensionless number 

where Eo is the r.m.s. value of B, in 9 and L is a lengthscale characterizing 9, then 
different equilibria may be located. If we change R then in effect we change the path 
in function space (figure 7) leading to magnetostatic equilibrium; but in all cases we 
remain in the subspace of vector fields that are topologically equivalent to or 
accessible from B,, and, in all cases, decay to Some stable magnetostatic equilibrium 
is inevitable. Some particular examples of this process are considered in detail in 
Is4 and 5. 

4. The case of trivial topology 
Suppose that 9 is simply connected and that the lines of forces of B,(x) are all 

unknotted closed curves which may each be shrunk to a point without cutting any 
other line of force. This is the case of ‘trivial topology’ for which no topological 
constraint impedes the energy decay process. We therefore anticipate that 
M ( t )  + E ( t )  -+O as t + 00 ; i t  is instructive to examine precisely how this decay occurs. 

To fix ideas, suppose that 9 is the cylinder 

r < a ,  O < z < z , ,  (4.1) 

of volume V, = nu%,, in cylindrical polar coordinates (r, q ~ ,  z ) ,  and that 

(4.2) 
where Bo(r, z )  has bounded support V, < V,, i.e. B, consists of a single circular flux 
tube within .9 (figure 8a).  Arnol’d (1974) briefly discusses this problem (with 
acknowledgement to Ya. B. Zel’dovich). 

B,(x) = (0, B O ( T ,  Z L O ) ,  



3 70 H .  K .  Moffatt 

' z  
I 

L 

force due 

FIGURE 8. Magnetic relaxation for the trivial topology: (a) the initial state; (a) the 
axisymmetric state of minimum energy; (c) non-axisymmetric instability. 

The magnetic energy associated with the field (4.2) is 

(4.3) 

where S,  is the cross-section of the torus V,. We write it in this way because, in the 
subsequent frozen-field evolution, B,+,(r, z ) / r  remains constant on any circle r = r ( t )  
moving with the fluid. Because of the weighting factor r3 in (4.3) the energy can 
therefore decrease through shrinkage of each and every circular line of force. For so 
long as the motion remains axisymmetric the minimum is achieved when V, is 
deformed to cylindrical shape, the field lines having rearranged themselves so that 
B, is a function of r only and 

A u G O .  
d r (  r ) 

The magnetic energy in this new configuration ,is then 

M I  = nzo Job e)' r3 dr, 

(4.4) 

(4.5) 

where xb2z, = V,. The associated current is parallel to  Oz, the total current in the 
tube being zero (figure 8 b ) .  

This magnetostatic equilibrium is, however, clearly unstable to non-axisymmetric 
disturbances since the magnetic pressure acts as indicated in figure 8 (c) in such a way 
as to  increase the perturbation. The increase in the length L of the tube is 
compensated by a decrease in cross-section. It is sufficient to  consider the special case 
in which 

where b 4 zo, i.e. the current tube is long and thin. I n  this case, any instability of 
the tube of wavelength h % b will increase its length to L( > z o )  and decrease its 
cross-sectional radius to  6, where, by conservation of volume, 

La2 x zo b2.  (4.7) 

During this distortion the field distribution (4.6) is maintained, provided r now 
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represents distance from the deformed axis of the tube. Hence to leading order in 
the small parameter b/h, the magnetic energy in the perturbed state is given by 

Hence M decreases as L increases, and the tube will continue to lengthen. Since 
instabilities can now continue in a similar way on any wavelength large compared 
with the ever-decreasing cross-sectional radius 6, M can clearly continue to decrease, 
the limiting value being Mmin = 0 (when L = co). Note that, although B+O in 94 for 
all x, the current field has an interesting structure in the limit t + m ,  being 
concentrated in a tube of infinite length (L+ 0 0 )  and vanishing cross-sectional radius 
(6+0); since (4.7) continues to hold in the limit, the Hausdorffdimension of the set 
of points at whichj 4= 0 in the limit t+ 00 remains equal to 3. 

If the initial field of the form (4.2) fills the domain 9 (i.e. V, = V,) then, again by 
regarding the field as an assembly of flux tubes, it  is easy to see that non-axisymmetric 
instabilities may in a similar way lead to a decrease of magnetic energy, and that 
there is no stable magnetostatic equilibrium other than the zero field, which is, 
surprisingly, topologically accessible from Bo(x) .  

(4 (b) (4 (4 

FIQURE 9. Magnetic relaxation for simple-linkage topology: (a) the initial state; (b) the stage at 
which the topological constraint impedes the relaxation process ; ( c )  the axisymmetric state of 
minimum magnetic energy; (d )  cross-section by a plane through the axis of symmetry. 

5. The case of ‘simple-linkage’ topology 

decomposed into two fields 

each of which separately has trivial topology, but with the toroidal support V, of B,, 
being simply linked with the toroidal support V, of B,,. The field distribution over 
each torus cross-section may be chosen so that the field B,(x) is smooth (and indeed, 
if required, infinitely differentiable). The helicity of this field distribution is 

The next simplest case to consider (figure 9 a )  is that in which B,(x) can be 

(5.1) Bo(x) = B,,(x) +B,,(X), 

.# = 2@, G2, (5.2) 

where @,, Q2 are the total fluxes of Bol, B,, around their respective tori (Moffatt 1969), 
and so (3.19) provides an immediate lower bound for the magnetic energy. 

Again, as in $4, the field lines tend to shrink, the volumes V, and V, being conserved. 
Obviously, this shrinkage is restricted if and when the two rings ‘make contact’ 
(figure 9b) .  Further decrease of the magnetic energy is still possible, however, through 
redistribution of the B-lines in V, (say) more uniformly close to the surface of V, ; the 
minimum is attained in the axisymmetric configuration of figure 9 ( c ) .  The final stage 
of approach to this equilibrium is a squeeze-film flow. Note here that an alternative 
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equilibrium is given by interchanging the roles of V, and V,, an indication of the 
non-uniqueness of topologically accessible equilibria. 

A section by a plane through the axis of symmetry of the equilibrium situation 
is shown in figure 9 ( d )  : S, (with boundary C,) is the section of V,, and S, (bounded 
internally by C,  and externally by C,) is the section of V,. The field in V, in the 
minimizing state has the form 

(5.3) B,E = (0, B&), 01, 

with (5.4) 

for reasons given in $4, and the field in V, has the form 

B? = v A (o,A&r,x),o), (5.5) 

the lines of force in V, being given by 

rAv(r, z) = const. (5.6) 

The shape of a 9  is obviously irrelevant for this equilibrium state. The magnetic 
energy of the configuration is 

and minimization of this expression involves a compromise between contraction of 
the B-lines in V, (which tends to make C ,  circular) and contraction of the B-lines in 
V, (which tends to make C, more 'D-shaped'). 

Note here that B / r  is certainly non-zero on the part of C, nearest to the axis Ox; 
moreover B," is aP$o certainly non-zero approaching C ,  from S,. Hence both 
meridional and azimuthal components of BE are discontinuous across C,, and there 
is therefore a helical current sheet on the surface of 6 ;  this is true even if B,(x) is 
infinitely differentiable, and this is a sure indication that the mapping x + X ( x )  
relating initial and h a 1  configurations is in this case not a homeomorphism. 

6. The role of helicity invariants 
The important role of Woltjer's (1958) helicity invariant in impeding the relaxation 

process has already been noted in $2. It was in fact shown by Woltjer that 
minimization of M subject only to the constraint of invariant total helicity leads to 
a field satisfying 

Such a field is generally not topologically accessible from an arbitrary initial field, 
since the minimization process may have failed to conserve the helicities Xt 
associated with sub-domains gt inside magnetic surfaces (see the discussion of $2). 
If these more detailed constraints are imposed (Taylor 1974), then minimization of 
M leads to a field satisfying 

V A B = aB, a = const. (6.1) 

V A B = a(x) B with B - V a  = 0. (6.2) 

This field may still not be topologically accessible from B, by a smooth volume- 
preserving flow, simply because the constraint of conservation of volume of flux tubes 
has not been incorporated. This additional constraint is built into (3.2) when V * v  = 0, 
and minimization of M subject to the full constraint implied in (3.2) leads, as we have 
shown, to a magnetostatic field satisfying 

j A B = V p ,  V-B=O. (6-3) 
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7. The topology of chaos 
As we have repeatedly observed, the topology of the initial field B,(x) is quite 

arbitrary; its field lines may be closed curves; or they may cover surfaces of arbitrary 
topology embedded within 9; or, in some subdomains gt of 9, the field lines may 
be ergodic, passing arbitrarily near each point of the subdomain if continued far 
enough. These are topological properties which are conserved during the relaxation 
process described by (3.1)-(3.5). The equilibrium field BE(x)  therefore has the same 
topology as B,. 

Now from (3.21), B E . V p E  = 0, so that, provided V p E  + 0, BE lines lie on surfaces 
p E  = const. If V p E  = 0 in some subdomain 53' of 9 thenjE = ~ ( x )  BE with B E * V a  = 0 
within this subdomain; so that, provided Va + 0, BE lines now lie on surfaces 
a = const. If Va = 0 in some subdomain 9" of 9' then jE = aBE with a = const. in 
9"; only in this case may BE be ergodic in 53" (or in some part of 9").i =-e B,, ergodic 

BE ergodic with constant and force-free a 

FIGURE 10. Schematic representation of the relation between the initial and final states when B,,(x) 
is ergodic in a subdomain 9, of 9;  9l maps to a subdomain 9f, in which BE is force-free with 
constant a. 

We are therefore driven to the extraordinary conclusion that a field B,(x) of 
arbitrarily complex topology can be continuously deformed to a magnetostatic 
equilibrium field B E @ ) ,  and that if B,(x)  is ergodic in any subdomain Q1 that  maps 
into a subdomain g1 under the mapping X+X(x) then 

(7.1) V A BE = aBE with a = const. in gl. 
The situation is shown schematically in figure 10. 

As noted by Arnol'd (1974), the eigenfunctions of (7.1) for a given domain are few; 
however, the domain gl is not 'given', but its shape is determined by the whole 
relaxation process. We must conclude that, whatever the topology of B, may be 
within the ergodic subdomain g1, this subdomain will so adjust itself during the 
relaxation process that the field does ultimately attain a form satisfying (7.1) 
throughout the image domain GI. If  the initial topology in B1 is complex, we may 
anticipate that the geometry of gl may be equally complex. 

8. The implications for Euler flows 

a domain 9 are 
The Euler equations for inviscid flow of an incompressible fluid of unit density in 

(8.1) 
au 
at 
- = u A U - V h ,  V - U  = 0, 

where o = curlu and h = p++u2 .  We assume, moreover, that  n-u = 0 on 3 9 .  Any 

u A o = Vh.  steady solution u(x )  satisfies 
(8.2) 

t For an example of a space-periodic field u for which curl u = au with a = const., and for which 
the streamlines are ergodic in a subdomain, see HBnon (1966) and Dombre et al. (1985). 
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Any particular stcady solution u E ( x )  of these equations may be described as an Euler 
flow in 9. 

Equations (8.2) exhibit an obvious analogy with the magnetostatic cquations (6.3), 
the analogy being between the variables 

B-u,  j*,, p-ho-h ,  (8.3) 
for some constant h,. Hence to every magnetostatic equilibrium B E ( x ) ,  there 
corresponds an Euler flow uE(x), and vice versa. 

We now formalize the result of $3  as a theorem in the context of Euler flows: 

THEOREM. Let U(x)  be an arbitrary smooth solenoidal Jield in 9 satisfying n. U = 0 
on a 9 .  Then there exists at least one Eulerjow u E ( x )  in 9 that is topologically accessible 
from V(x ) .  

This means that there exists a mapping x + X ( x )  that  can be interpreted as the 
net displacement associated with a smooth velocity field v ( x , t )  of finite total 
dissipation (0 < t < C O )  such that 

ax, 
u f ( x )  = u A x 1%. 

Hence the streamlines of U map faithfully onto the streamlines of uE. (Note that 
topological accessibility does not imply dynamical accessibility, which would require 
that the vortex lines of U be deformable to the vortex lines of uE.) 

As for the case of the magnetostatic equilibria, this theorem immediately implies 
the existence of an uncountable infinity of topologically distinct Euler flows. In  
particular, given any knot X in 9, there is an Euler flow that is topologically 
accessible from a flow U(x)  along a closed streamtube centred on 3? ! Such a flow (like 
the magnetostatic equilibrium considered in $4) is unaffected by the boundary of the 
domain a 9 ,  and can equally exist in an unbounded domain. 

The question of the stability of Euler flows is a difficult one, which is in no way 
settled by appeal to the magnetostatic analogy. This is because perturbations about 
a steady state are governed by (8.1), which conserves vortex-line topology, in distinct 
conflict with the B t t  u analogy. This important distinction between Euler flows and 
the magnetostatic equilibria to which they correspond may be most readily 
appreciated by appeal to the particular example treated in $4. The Euler flow 
corresponding to  the field of figure 8 ( b )  is of the form 

UE = (0, u&r),O),  (8.5) 

where 

This flow is unstable to axisymmetric perturbations if, by the Rayleigh criterion, 

d 
- (ru&r)) < 0. 
dr  

Thus, for example, if u P = oo r e-ralba (8.8) 

then (8.6) is satisfied for all r ,  and (8.7) is satisfied for r > b .  Hence the flow is un- 
stable to  axisymmetric perturbations, although the corresponding magnetostatic 
equilibrium is stable to axisymmetric perturbations. (Conversely, this flow is 
probably stable to non-axisymmetric perturbations, although the corresponding 
magnetostatic equilibrium is unstable to  such perturbations !) 
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9. Speculations concerning the structure of turbulence 
As indicated in 1, insofar as viscous effects may be neglected, Euler flows may be 

regarded as fixed points in the function space in which unsteady solutions of the Euler 
equations evolve, and, even if these fixed points are unstable, their location in the 
function space may provide valuable clues concerning the structure of turbulent flow. 
The fact that there is apparently an incredibly rich variety of Euler flows corresponding 
to every possible streamline topology suggests that this idea may be worth pursuing. 

Consider first the generic structure of an arbitrary solenoidal velocity field V(x)  
in 9, satisfying no U = 0 on 9 9 .  In some non-overlapping subdomains Q1, g2, ..., 
an of 9, U(x) may be expected to be ergodic, and in the remainder of the domain 
the streamlines of U(x)  will cover surfaces. Let u E ( x )  be an Euler flow that is 
topologicafly accessible from U(x)  (this exists by the theorem of IS), and let x + X ( x )  
be the corresponding mapping. Then, following the argument of $7, 

(9.1) mE = a, uE in Gi (the image of B,), 

where a,( =I= 0) is constant. Hence the relative helicity of the flow in $, is 
uE*wEdV 

i ;Il"t = = k 1 according as a, 8 0. (9-2) 
{JGtuE2dV{4tmE2dVr 

Thus in each ergodic 'blob' a,, we have a flow of maximal helicity. These blobs may 
of course have horribly complicated boundaries, and they may be linked with each 
other in a complicated manner. 

Let $& denote that part of 9 that is not occupied by ergodic blobs; then in aR 
the streamlines of uE lie on surfaces, and every point in aR lies on such a 
streamsurface (figure 11). If any vortex sheets occur, these must be located on these 
streamsurfaces, as indicated in the figure. 

This then, in schematic form, is the generic structure of an Euler flow. For obvious 
reasons, it  may be expected to be in general unstable. In particular, any vortex sheets 
are subject to the Kelvin-Helmholtz instability and will wind up into characteristic 
double spirals. Nevertheless, the picture of figure 11 is suggestive in the context of 
turbulent flow. The blobs Gi play the role of coherent structures, which do indeed 
in experimental contexts frequently exhibit strong helicity (positive or negative) 
(Tsinober & Levich 1983). The vortex sheets in aR are the seat of viscous dissipation. 
The double-spiral instability to which these sheets are subject can in principle yield 
an inertial-range spectrum of Kolmogorov ( - t )  exponent (Moffatt 1984). 

We may thus picture turbulence as a state a t  all times evolving in a neighbourhood 
of an Euler flow (which may be an Euler flow that is topologically accessible from 
the actual velocity field at a given instant), or possibly evolving through 
neighbourhoods of a succession of Euler flows. If there is any validity in this 
description, then high relative helicity I u - m  I/(ue we$ should be correlated with 
low energy dissipation, and vice versa, a prediction that should be amenable to 
experimental and numerical testing. 
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sheet 

FIQURE 11. Schematic representation of generic structure of an Euler flow : ‘coherent’ helical 
structures (ergodic blobs) separated by the streamsurfaces on which vortex sheets may be located. 

10. Conclusions and suggestions for further investigation 
We have used the problem of magnetic relaxation as a vehicle for proof of the 

existence of magnetostatic equilibria, and hence of analogous Euler flows, of 
arbitrary topological structure. This arbitrary structure is defined by an ‘initial ’ field 
BJx) which may be ergodic in certain regions and regular (i.e. having magnetic 
surfaces) in others. In  the relaxation process the topological structure is conserved 
in the sense that B-lines may not cross each other or reconnect ; but magnetic surfaces 
may, and in general do, come together in the h a 1  stage of relaxation, forming 
tangential discontinuities (i.e. current sheets). The flow in this final stage has a 
squeeze-film character, in which the velocity falls to zero like an inverse power of time, 
and certain fluid elements experience unbounded total strain. The displacement 
mapping x + X ( x )  is then in the limit not a homeomorphism; it is this feature that 
in fact removes the severe structural constraints on magnetostatic equilibria (or 
Euler flows) implied by the theorems of Arnol’d (1965,1966), which apply to analytic 
fields, and which do not therefore allow for the possible presence of tangential 
discontinuities. 

The concept of ‘topological accessibility ’ , as opposed to ‘topological equivalence ’, 
is natural in the present context, and is defined in $52 and 3 in terms of a mapping 
x + X ( x )  that may be interpreted as the asymptotic displacement field associated with 
a smooth velocity field u(x,  t )  (0 < t < 00)  of finite total dissipation. The equilibrium 
field BE@) is then topologically accessible from Bo(x),  and this means in particular 
that all knots and linkages in Bo(x) are mapped by x + X ( x )  into similar knots and 
linkages in BE@). 

In the same senSe there exists at  least one Euler flow u E ( x )  that is topologically 
accessible from an arbitrary solenoidal flow U(x)  in 59. This Euler flow is characterized 
by ‘blobs’ of maximal helicity (positive or negative) in which the streamlines are 
ergodic, separated by regular regions that are dense with streamsurfaces, on some 
of which vortex sheets may be located. Such Euler flows are probably in general 
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unstable, but they may nevertheless provide the basis for a structural model of 
turbulence, as suggested in $9. 

Many problems arise from the present investigation and demand further study. 
(i) The procedure of $3 provides an algorithm whereby magnetostatic equilibria 

that are topologically accessible from a given initial field Bo(x) may be (in principle) 
numerically determined. Of particular interest would be the formation of current 
sheets as t + a. From a numerical point of view, the difficulty is to devise a procedure 
that works accurately at  zero magnetic diffusivity. It may be necessary to retain a 
weak diffusive term 7V2B (with 7 4 v = p/p )  in (3.2) and to see whether a ‘quasi- 
equilibrium ’ develops, with layers of high field gradient (presumably O(q-k)). 

(ii) The squeeze-film behaviour in the final approach to magnetostatic equilibrium, 
in which two flux tubes approach each other, is of interest, and may be amenable 
to local analysis. 

(iii) The question of uniqueness (or otherwise) of magnetostatic equilibria accessible 
through volume-preserving relaxation of a given field also deserves numerical 
investigation. As suggested in $ 3, variation of the viscosity parameter (or equivalently 
of the Reynolds number of the relaxation process) may lead to different equilibria. 
Moreover, different relaxation mechanisms (e.g. resistance proportional to velocity 
as in a porous medium) may be adopted to provide different routes towards 
equilibrium. Again we emphasize that the dissipative mechanism should be regarded 
more as a mathematical artifice than as an essential part of a real physical process. 

(iv) The magnetic relaxation problem may equally be formulated in a compressible 
medium (having both shear and bulk viscosity). If, for example, pressure and density 
are related by dp/dp = k, where k is constant, then we arrive at a family of equilibria 
Bf(x)  (0 < k < a), the limit k+co corresponding to the incompressible case, and 
the limit k+O corresponding to a ‘pressureless plasma ’. The analogy with Euler flows 
of an incompressible inviscid fluid (which is evidently still at our disposal) then 
implies the existence of a corresponding family @(x) of Euler flows topologically 
accessible (via mappings that are no longer volume-preserving) from a given flow 
V ( x ) .  This opens up a wealth of possibilities which will be the subject of a separate 
paper. The limit k+O (for which the equilibrium field is a Beltrami field) has peculiar 
properties which will require special consideration. 

(v) The restriction Bo.n = 0 on a 9  that has been adopted in this paper may 
also be relaxed. If we adopt an initial condition of the form Bo.n = f ( x )  on 3 9 ,  where 
ja,f(x) ds = 0, then during the relaxation process, B.n = f ( x )  for all t > 0, and the 
equilibrium (relaxed) field BE@) satisfies this boundary condition also. This 
formulation of the problem (particularly if carried out in a compressible medium) has 
an immediate bearing on the problem of the adjustment of a magnetic field in a given 
domain in response to movement of the ‘footpoints’ of the B-lines where these 
intersect the boundary. This is a large and important problem in the context of solar- 
flare theory (see e..g. Sweet 1969) which also deserves separate treatment. 

A first draft of this work was completed during a visit to the University of Palermo 
in January 1985, supported by the Consiglio Nazionale delle Ricerche, Italy. I am 
indebted to many colleagues, andparticularly to K. Bajer, E. Levich, M. R. E. Proctor 
and A. Tsinober, for comments that have led to improvements in the presentation. 

I am grateful also to Dr G .  Wilson who provided a translation of the paper by Arnol’d 
(1974). 
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